Archive

Posts Tagged ‘Robotics’

Computer Vision

September 4th, 2010 2 comments

Computer vision is the science and technology of machines that see. As a scientific discipline, computer vision is concerned with the theory behind artificial systems that extract information from images. The image data can take many forms, such as video sequences, views from multiple cameras, or multi-dimensional data from a medical scanner.

As a technological discipline, computer vision seeks to apply its theories and models to the construction of computer vision systems.

Computer vision is, in some ways, the inverse of computer graphics. While computer graphics produces image data from 3D models, computer vision often produces 3D models from image data. There is also a trend towards a combination of the two disciplines.

An intelligent computer system can go a long way in reducing human labor. However, if such a system can be provided with a method of actually interacting with the physical world, its usefulness is greatly increased. Robotics gives AI the means to exhibit real-world intelligence by directly manipulating their environment. That is, robotics gives the artificial mind a body.

An essential component of robotics has to do with artificial sensory systems in general and artificial vision in particular. While it is true that robotics systems exist (including many successful industrial robots) that have no sensory equipment (or very limited sensors) they tend to be very brittle systems. They need to have their work area perfectly lit, with no shadows or mess. They must have the parts needed in precisely the right position and orientation, and if they are moved to a new location, they may require hours of recalibration. If a system could be developed that could make sense out of a visual scene it would greatly enhance the potential for robotics applications. It is therefore not surprising that the study of artificial vision and robotics go hand-in-hand.

Application Areas

September 4th, 2010 No comments
Agriculture, Natural Resource Management and the Environment, Architecture & Design

Art

Artificial Noses … and Taste

Astronomy & Space Exploration

Assistive Technologies

Automatic Programming

Autonomous Vehicles, Robots, Rovers, Explorers

Marketing, Customer Relations/Service & E-Commerce, Medicine

Military

Music

Networks – including Maintenance, Security & Intrusion Detection

Petroleum Industry

Politics & Foreign Relations

Public Health & Welfare

Scientific Discovery

Banking, Finance & Investing, Bioinformatics

Business & Manufacturing

Drama, Fiction, Poetry, Storytelling & Machine Writing

Earth & Atmospheric Sciences

Engineering

Filtering

Fraud Detection & Prevention

Agents, Expert Systems

Games & Puzzles

Machine Learning

Natural Language Processing

Robots

Vision

Hazards & Disasters, Information Retrieval & Extraction

Intelligent Tutoring Systems

Knowledge Management

Law

Law Enforcement & Public Safety

Libraries

Machine Translation

Smart Rooms, Smart Houses and Household Appliances, Social Science

Sports

Telecommunications

Transportation & Shipping

Video Games, Toys. Robotic Pets & Entertainment

Artificial Intelligence in the form of expert systems and neural networks have applications in every field of human endeavor. They combine precision and computational power with pure logic, to solve problems and reduce error in operation. Already, robot expert systems are taking over many jobs in industries that are dangerous for or beyond human ability. Some of the applications divided by domains are as follows:

Heavy Industries and Space

Robotics and cybernetics have taken a leap combined with artificially intelligent expert systems. An entire manufacturing process is now totally automated, controlled and maintained by a computer system in car manufacture, machine tool production, computer chip production and almost every high-tech process. They carry out dangerous tasks like handling hazardous radioactive materials. Robotic pilots carry out complex maneuvering techniques of unmanned spacecraft sent in space. Japan is the leading country in the world in terms of robotics research and use.

Finance

Banks use intelligent software applications to screen and analyze financial data. Software that can predict trends in the stock market have created which have known to beat humans in predictive power. Credit card providers, telephone companies, mortgage lenders, banks, and the U.S. Government employs AI systems to detect fraud and expedite financial transactions, with daily transaction volumes in the billions. These systems first use-learning algorithms to construct profiles of customer usage patterns, and then use the resulting profiles to detect unusual patterns and take the appropriate action (e.g., disable the credit card). Such automated oversight of financial transactions is an important component in achieving a viable basis for electronic commerce.

Computer Science

Researchers in quest of artificial intelligence have created spin offs like dynamic programming, object-oriented programming, symbolic programming, intelligent storage management systems and many more such tools. The primary goal of creating an artificial intelligence remains a distant dream but people are getting an idea of the ultimate path, which could lead to it.

Aviation

Researchers in quest of artificial intelligence have created spin offs like dynamic programming, object-oriented programming, symbolic programming, intelligent storage management systems and many more such tools. The primary goal of creating an artificial intelligence remains a distant dream but people are getting an idea of the ultimate path, which could lead to it.

Weather Forecast

Neural networks are used for predicting weather conditions. Previous data is fed to a neural network, which learns the pattern and uses that knowledge to predict weather patterns.

Swarm Intelligence

This is an approach to, as well as application of artificial intelligence similar to a neural network. Here, programmers study how intelligence emerges in natural systems like swarms of bees even though on an individual level, a bee just follows simple rules. They study relationships in nature like the prey-predator relationships that give an insight into how intelligence emerges in a swarm or collection from simple rules at an individual level. They develop intelligent systems by creating agent programs that mimic the behavior of these natural systems… etc.